【连续介质力学】张量的性质2

张量的代数操作

张量的性质

张量迹 Tensor Trace

定义e^i⨂e^j\hat e_i \bigotimes \hat e_je^i​⨂e^j​的迹:

Tr(e^i⨂e^j)=e^i⋅e^j=δijTr(\hat e_i \bigotimes \hat e_j) = \hat e_i \cdot \hat e_j = \delta_{ij}Tr(e^i​⨂e^j​)=e^i​⋅e^j​=δij​

所以,可以定义二阶张量的迹为:对角线元素加和

Tr(A)=Tr(Aije^i⨂e^j)=AijTr(e^i⨂e^j)=Aijδij=AiiTr(A) = Tr(A_{ij}\hat e_i \bigotimes \hat e_j) = A_{ij}Tr(\hat e_i \bigotimes \hat e_j) = A_{ij}\delta_{ij} = A_{ii}Tr(A)=Tr(Aij​e^i​⨂e^j​)=Aij​Tr(e^i​⨂e^j​)=Aij​δij​=Aii​

并矢的迹为:

Tr(u⃗⨂v⃗)=u⃗iv⃗jTr(e^i⨂e^j)=u⃗iv⃗jδij=u⃗iv⃗i=u⃗⋅v⃗Tr(\vec u \bigotimes \vec v) = \vec u_i \vec v_jTr(\hat e_i \bigotimes \hat e_j)= \vec u_i \vec v_j\delta_{ij} = \vec u_i \vec v_i = \vec u \cdot \vec vTr(u⨂v)=ui​vj​Tr(e^i​⨂e^j​)=ui​vj​δij​=ui​vi​=u⋅v

NOTE: 张量的迹是一个不变量,是独立于坐标系的

张量的迹的性质:

张量转置的迹等于张量的迹: Tr(AT)=Tr(A)Tr(A^T) = Tr(A)Tr(AT)=Tr(A)加法: Tr(A+B)=Tr(A)+Tr(B)Tr(A +B) = Tr(A) + Tr(B)Tr(A+B)=Tr(A)+Tr(B)点积:

对于另一个双收缩( : ) , 有

所以, 两个张量进行双收缩(⋅⋅\cdot \cdot⋅⋅)操作,等价于求两个张量点积后的迹

两个张量进行双收缩(:)操作,等价于求一个张量与另一个张量转置点积后的迹

同样地,可以验证:

Tr(A⋅B⋅C)=Tr(B⋅C⋅A)=Tr(C⋅A⋅B)=AijBjkCkiTr(A \cdot B \cdot C) = Tr(B \cdot C \cdot A) =Tr(C \cdot A \cdot B) = A_{ij}B_{jk}C_{ki}Tr(A⋅B⋅C)=Tr(B⋅C⋅A)=Tr(C⋅A⋅B)=Aij​Bjk​Cki​Tr(A)=AiiTr(A) = A_{ii}Tr(A)=Aii​KaTeX parse error: Expected '}', got 'EOF' at end of input: …A)=A_{ii}A_{jj]Tr(A⋅A)=Tr(A2)=AilAliTr(A\cdot A) =Tr(A^2)=A_{il}A_{li}Tr(A⋅A)=Tr(A2)=Ail​Ali​Tr(A⋅A⋅A)=Tr(A3)=AijAjkAkiTr(A\cdot A \cdot A)=Tr(A^3) = A_{ij}A_{jk}A_{ki}Tr(A⋅A⋅A)=Tr(A3)=Aij​Ajk​Aki​

问题1.19 证明: (Tm)T=(TT)m(T^m)^T=(T^T)^m(Tm)T=(TT)m 以及 Tr(TT)m=Tr(Tm)Tr(T^T)^m=Tr(T^m)Tr(TT)m=Tr(Tm)

特殊张量

单位张量:

1=δije^i⨂e^j=e^i⨂e^i=1e^i⨂e^j1 = \delta_{ij}\hat e_i \bigotimes \hat e_j = \hat e_i \bigotimes \hat e_i = 1 \hat e_i \bigotimes \hat e_j1=δij​e^i​⨂e^j​=e^i​⨂e^i​=1e^i​⨂e^j​

四阶单位张量的定义:

可以计算:

I:A=(δikδjle^i⨂e^j⨂e^k⨂e^l):(Apqe^p⨂e^q)=δikδjlApqδkpδlqe^i⨂e^j=δikδjlAkle^i⨂e^j=Aije^i⨂e^j=AI:A = (\delta_{ik}\delta_{jl}\hat e_i \bigotimes \hat e_j \bigotimes \hat e_k\bigotimes\hat e_l ): (A_{pq}\hat e_p \bigotimes \hat e_q) \\ =\delta_{ik}\delta_{jl}A_{pq} \delta_{kp} \delta_{lq} \hat e_i \bigotimes \hat e_j \\ =\delta_{ik}\delta_{jl}A_{kl} \hat e_i \bigotimes \hat e_j \\ =A_{ij} \hat e_i \bigotimes \hat e_j \\= AI:A=(δik​δjl​e^i​⨂e^j​⨂e^k​⨂e^l​):(Apq​e^p​⨂e^q​)=δik​δjl​Apq​δkp​δlq​e^i​⨂e^j​=δik​δjl​Akl​e^i​⨂e^j​=Aij​e^i​⨂e^j​=A

Iˉ:A=(δilδjke^i⨂e^j⨂e^k⨂e^l):(Apqe^p⨂e^q)=δilδjkApqδkpδlqe^i⨂e^j=δilδjkAkle^i⨂e^j=Ajie^i⨂e^j=AT\bar I:A = (\delta_{il}\delta_{jk}\hat e_i \bigotimes \hat e_j \bigotimes \hat e_k\bigotimes\hat e_l ): (A_{pq}\hat e_p \bigotimes \hat e_q) \\ =\delta_{il}\delta_{jk}A_{pq} \delta_{kp} \delta_{lq} \hat e_i \bigotimes \hat e_j \\ =\delta_{il}\delta_{jk}A_{kl} \hat e_i \bigotimes \hat e_j \\ =A_{ji} \hat e_i \bigotimes \hat e_j \\= A^TIˉ:A=(δil​δjk​e^i​⨂e^j​⨂e^k​⨂e^l​):(Apq​e^p​⨂e^q​)=δil​δjk​Apq​δkp​δlq​e^i​⨂e^j​=δil​δjk​Akl​e^i​⨂e^j​=Aji​e^i​⨂e^j​=AT

I‾‾:A=(δijδkle^i⨂e^j⨂e^k⨂e^l):(Apqe^p⨂e^q)=δijδklApqδkpδlqe^i⨂e^j=δijδklAkle^i⨂e^j=Akkδije^i⨂e^j=Tr(A)1\overline{\overline{I}} :A = (\delta_{ij}\delta_{kl}\hat e_i \bigotimes \hat e_j \bigotimes \hat e_k\bigotimes\hat e_l ): (A_{pq}\hat e_p \bigotimes \hat e_q) \\ =\delta_{ij}\delta_{kl}A_{pq} \delta_{kp} \delta_{lq} \hat e_i \bigotimes \hat e_j \\ =\delta_{ij}\delta_{kl}A_{kl} \hat e_i \bigotimes \hat e_j \\ =A_{kk}\delta_{ij}\hat e_i \bigotimes \hat e_j \\= Tr(A) 1I:A=(δij​δkl​e^i​⨂e^j​⨂e^k​⨂e^l​):(Apq​e^p​⨂e^q​)=δij​δkl​Apq​δkp​δlq​e^i​⨂e^j​=δij​δkl​Akl​e^i​⨂e^j​=Akk​δij​e^i​⨂e^j​=Tr(A)1

四阶单位张量的对称部分:

张量乘积符号⨂‾\overline{\bigotimes}⨂​ 的定义如下:

与以下是一样的:

张量乘积符号⨂‾\underline{\bigotimes}⨂​ 的定义如下:

四阶单位张量的反对称部分:

以下等式成立:

b⃗⋅1=b⃗\vec b \cdot 1 = \vec bb⋅1=b

I:A=AI:A = AI:A=A

Isym:A=AsymI^{sym}:A = A^{sym}Isym:A=Asym

A:1=Tr(A)=AiiA:1 = Tr(A) =A_{ii}A:1=Tr(A)=Aii​

A2:1=Tr(A2)=Tr(A⋅A)=AilAliA^2:1 = Tr(A^2)=Tr(A\cdot A) = A_{il}A_{li}A2:1=Tr(A2)=Tr(A⋅A)=Ail​Ali​

A3:1=Tr(A3)=Tr(A⋅A⋅A)=AijAjkAklA^3:1 = Tr(A^3)=Tr(A\cdot A \cdot A)=A_{ij}A_{jk}A_{kl}A3:1=Tr(A3)=Tr(A⋅A⋅A)=Aij​Ajk​Akl​

问题1.20 证明:T:1=Tr(T)T:1 = Tr(T)T:1=Tr(T)

Levi-Civita 伪张量(置换张量):

是一个三阶伪张量:

ϵ=ϵijke^i⨂e^j⨂e^k\epsilon = \epsilon_{ijk} \hat e_i \bigotimes \hat e_j \bigotimes \hat e_kϵ=ϵijk​e^i​⨂e^j​⨂e^k​

张量的行列式:

det⁡(A)≡∣A∣=ϵijkA1iA2jA3k=ϵijkAi1Aj2Ak3\det (A) \equiv|A| = \epsilon_{ijk}A_{1i}A_{2j}A_{3k} = \epsilon_{ijk}A_{i1}A_{j2}A_{k3}det(A)≡∣A∣=ϵijk​A1i​A2j​A3k​=ϵijk​Ai1​Aj2​Ak3​

张量的行列式也是一个不变量(独立于坐标系)

行列式的性质:

det⁡1=1\det 1 = 1det1=1

det⁡AT=det⁡A\det A^T = \det AdetAT=detA

det⁡(A⋅B)=det⁡A⋅det⁡B\det (A \cdot B) =\det A \cdot \det Bdet(A⋅B)=detA⋅detB

det⁡(αA)=α3det⁡A\det (\alpha A) = \alpha^3 \det Adet(αA)=α3detA

如果det⁡A=0\det A = 0detA=0,则A是奇异的

如果交换两行或两列,则行列式的符号改变

如果某一行或某一列的所有元素为0, 则行列式为0

如果对某一行或某一列所有元素乘以c,则行列式变为c∣A∣c|A|c∣A∣

如果两行(列)或以上是线性相关的,则行列式为0

问题1.21 证明∣A∣ϵtpq=ϵrjkArtAjpAkq|A|\epsilon_{tpq} = \epsilon_{rjk}A_{rt}A_{jp}A_{kq}∣A∣ϵtpq​=ϵrjk​Art​Ajp​Akq​

以上用到:

问题1.22 证明: ∣A∣=16ϵrjkϵtpqArtAjpAkq|A| = \frac{1}{6}\epsilon_{rjk}\epsilon_{tpq}A_{rt}A_{jp}A_{kq}∣A∣=61​ϵrjk​ϵtpq​Art​Ajp​Akq​

其中用到:

问题1.23 证明: det⁡(μ1+αa⃗⨂b⃗)=μ3+μ2αa⃗⋅b⃗\det (\mu 1 + \alpha \vec a \bigotimes \vec b) = \mu^3 + \mu^2 \alpha \vec a \cdot \vec bdet(μ1+αa⨂b)=μ3+μ2αa⋅b

由于以下等式也成立:

det⁡[1+α(a⃗⨂b⃗)+β(b⃗⨂a⃗)]=1+α(a⃗⋅b⃗)+β(a⃗⋅b⃗)+αβ[(a⃗⋅b⃗)2−(a⃗⋅a⃗)(b⃗⋅b⃗)]\det [1 + \alpha (\vec a \bigotimes \vec b) + \beta (\vec b \bigotimes \vec a)] = 1 + \alpha (\vec a \cdot \vec b) +\beta (\vec a \cdot \vec b) + \alpha \beta [(\vec a \cdot \vec b)^2 - (\vec a \cdot \vec a)(\vec b \cdot \vec b)]det[1+α(a⨂b)+β(b⨂a)]=1+α(a⋅b)+β(a⋅b)+αβ[(a⋅b)2−(a⋅a)(b⋅b)]

令 β=0\beta = 0β=0, 也可以得到det⁡(μ1+αa⃗⨂b⃗)=μ3+μ2αa⃗⋅b⃗\det (\mu 1 + \alpha \vec a \bigotimes \vec b) = \mu^3 + \mu^2 \alpha \vec a \cdot \vec bdet(μ1+αa⨂b)=μ3+μ2αa⋅b

如果α=β\alpha = \betaα=β, 有:

det⁡[1+α(a⃗⨂b⃗)+α(b⃗⨂a⃗)]=1+α(a⃗⋅b⃗)+α(a⃗⋅b⃗)+α2[(a⃗⋅b⃗)2−(a⃗⋅a⃗)(b⃗⋅b⃗)]=1+α[2(a⃗⋅b⃗)−α(a⃗∧b⃗)2]\det [1 + \alpha (\vec a \bigotimes \vec b) + \alpha (\vec b \bigotimes \vec a)] \\= 1 + \alpha (\vec a \cdot \vec b) +\alpha (\vec a \cdot \vec b) + \alpha^2 [(\vec a \cdot \vec b)^2 - (\vec a \cdot \vec a)(\vec b \cdot \vec b)] \\ = 1 + \alpha [2(\vec a \cdot \vec b) - \alpha (\vec a \wedge \vec b)^2]det[1+α(a⨂b)+α(b⨂a)]=1+α(a⋅b)+α(a⋅b)+α2[(a⋅b)2−(a⋅a)(b⋅b)]=1+α[2(a⋅b)−α(a∧b)2]

其中,用到:

以下等式成立:

det⁡(αA+βB)=α3det⁡A+α2βTr(B⋅adj(A))+αβ2[A⋅adj(B)]+β3det⁡B\det (\alpha A + \beta B) \\

=\alpha^3\det A + \alpha^2 \beta Tr(B \cdot adj(A))+ \alpha \beta^2 [A \cdot adj(B)] + \beta^3 \det Bdet(αA+βB)=α3detA+α2βTr(B⋅adj(A))+αβ2[A⋅adj(B)]+β3detB

当α=1,A=1,B=a⃗⨂b⃗\alpha = 1, A = 1, B = \vec a \bigotimes \vec bα=1,A=1,B=a⨂b, 且由于det⁡(a⃗⨂b⃗)=0\det (\vec a \bigotimes \vec b) = 0det(a⨂b)=0 以及 cof(a⃗⨂b⃗)=0cof(\vec a \bigotimes \vec b) = 0cof(a⨂b)=0, 有

det⁡(1+βa⃗⨂b⃗)=det⁡1+βTr[a⃗⨂b⃗⋅1]=1+βTr[aibj]=1+βa⃗⋅b⃗\det (1 + \beta \vec a \bigotimes \vec b) = \det 1 + \beta Tr[\vec a \bigotimes \vec b \cdot 1] = 1+\beta Tr[a_ib_j] = 1+ \beta \vec a \cdot \vec bdet(1+βa⨂b)=det1+βTr[a⨂b⋅1]=1+βTr[ai​bj​]=1+βa⋅b

性质:

(A⋅a⃗)⋅[(A⋅b⃗)∧(A⋅c⃗)]=det⁡(A)[a⃗⋅b⃗∧c⃗]\boxed{(A \cdot \vec a) \cdot [(A \cdot \vec b) \wedge (A \cdot \vec c)] = \det (A)[\vec a \cdot \vec b \wedge \vec c]}(A⋅a)⋅[(A⋅b)∧(A⋅c)]=det(A)[a⋅b∧c]​

证明:

由于a⃗⋅(b⃗∧c⃗)=ϵijkaibjck\vec a \cdot (\vec b \wedge \vec c) = \epsilon_{ijk} a_i b_j c_ka⋅(b∧c)=ϵijk​ai​bj​ck​

两边同乘∣A∣|A|∣A∣:

a⃗⋅(b⃗∧c⃗)∣A∣=ϵijkaibjck∣A∣\vec a \cdot (\vec b \wedge \vec c) |A| = \epsilon_{ijk} a_i b_j c_k |A|a⋅(b∧c)∣A∣=ϵijk​ai​bj​ck​∣A∣

又由于 ∣A∣ϵijk=ϵpqrApiAqjArk|A|\epsilon_{ijk} = \epsilon_{pqr} A_{pi}A_{qj}A_{rk}∣A∣ϵijk​=ϵpqr​Api​Aqj​Ark​, 因此:

a⃗⋅(b⃗∧c⃗)∣A∣=ϵijkaibjck∣A∣=ϵpqrApiAqjArkaibjck=ϵpqrApiaiAqjbjArkck=(A⋅a⃗)⋅[(A⋅b⃗)∧(A⋅c⃗)]=[(A⋅b⃗)∧(A⋅c⃗)]⋅(A⋅a⃗)\vec a \cdot (\vec b \wedge \vec c) |A| = \epsilon_{ijk} a_i b_j c_k |A| \\=\epsilon_{pqr} A_{pi}A_{qj}A_{rk} a_i b_j c_k \\=\epsilon_{pqr} A_{pi}a_iA_{qj}b_jA_{rk}c_k \\ =(A \cdot \vec a) \cdot [(A \cdot \vec b) \wedge (A \cdot \vec c)] \\= [(A \cdot \vec b) \wedge (A \cdot \vec c)]\cdot (A \cdot \vec a)a⋅(b∧c)∣A∣=ϵijk​ai​bj​ck​∣A∣=ϵpqr​Api​Aqj​Ark​ai​bj​ck​=ϵpqr​Api​ai​Aqj​bj​Ark​ck​=(A⋅a)⋅[(A⋅b)∧(A⋅c)]=[(A⋅b)∧(A⋅c)]⋅(A⋅a)

张量的逆

张量的逆: A−1A^{-1}A−1

指标形式:

为了计算张量的逆,我们从伴随张量(Adjugate Tensor)开始:

adj(AT)⋅(a⃗∧b⃗)=(A⋅a⃗)∧(A⋅b⃗)adj(A^T)\cdot (\vec a \wedge \vec b)=(A \cdot \vec a)\wedge (A \cdot \vec b)adj(AT)⋅(a∧b)=(A⋅a)∧(A⋅b)

两边同乘以一个任意的向量d⃗\vec dd

上一节,证明了:

a⃗⋅(b⃗∧c⃗)∣A∣=[(A⋅b⃗)∧(A⋅c⃗)]⋅(A⋅a⃗)\vec a \cdot (\vec b \wedge \vec c) |A| = [(A \cdot \vec b) \wedge (A \cdot \vec c)]\cdot (A \cdot \vec a)a⋅(b∧c)∣A∣=[(A⋅b)∧(A⋅c)]⋅(A⋅a)

所以有:

c⃗⋅(a⃗∧b⃗)∣A∣=[(A⋅a⃗)∧(A⋅b⃗)]⋅(A⋅c⃗)\vec c \cdot (\vec a \wedge \vec b) |A| = [(A \cdot \vec a) \wedge (A \cdot \vec b)]\cdot (A \cdot \vec c)c⋅(a∧b)∣A∣=[(A⋅a)∧(A⋅b)]⋅(A⋅c)

因此:

[(adj(A))T⋅(a⃗∧b⃗)]⋅d⃗=[(A⋅a⃗)∧(A⋅b⃗)]⋅(A⋅A−1⋅d⃗)=A−1⋅d⃗⋅(a⃗∧b⃗)∣A∣=∣A∣(a⃗∧b⃗)⋅A−1⋅d⃗[ (adj(A))^T\cdot (\vec a \wedge \vec b) ] \cdot \vec d =[(A \cdot \vec a) \wedge (A \cdot \vec b)]\cdot (A \cdot A^{-1} \cdot \vec d) \\=A^{-1} \cdot \vec d \cdot (\vec a \wedge \vec b) |A| \\ =|A| (\vec a \wedge \vec b)\cdot A^{-1} \cdot \vec d[(adj(A))T⋅(a∧b)]⋅d=[(A⋅a)∧(A⋅b)]⋅(A⋅A−1⋅d)=A−1⋅d⋅(a∧b)∣A∣=∣A∣(a∧b)⋅A−1⋅d

令p⃗=a⃗∧b⃗\vec p = \vec a \wedge \vec bp​=a∧b, 上式可以重写为:

因此: [adj(A)]=∣A∣A−1[adj(A)] = |A| A^{-1}[adj(A)]=∣A∣A−1

所以, 张量的逆, A−1=1∣A∣[adj(A)]=1∣A∣[cof(A)]T\boxed{A^{-1} = \frac{1}{|A|}[adj(A)] = \frac{1}{|A|}[cof(A)]^T}A−1=∣A∣1​[adj(A)]=∣A∣1​[cof(A)]T​

可逆张量,有以下性质:

(A⋅B)−1=B−1⋅A−1(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}(A⋅B)−1=B−1⋅A−1

(A−1)−1=A(A^{-1})^{-1} = A(A−1)−1=A

(βA)−1=1βA−1(\beta A)^{-1} = \frac{1}{\beta}A^{-1}(βA)−1=β1​A−1

det⁡(A−1=[det⁡A]−1)\det (A^{-1} = [\det A]^{-1})det(A−1=[detA]−1)

可逆转置:

A−T≡(A−1)T≡(AT)−1A^{-T} \equiv (A^{-1})^T \equiv (A^T)^{-1}A−T≡(A−1)T≡(AT)−1

证明adj(A⋅B)=adj(A)⋅adj(B)adj(A \cdot B) = adj(A) \cdot adj(B)adj(A⋅B)=adj(A)⋅adj(B):

其中,用到了性质: ∣A⋅B∣=∣A∣∣B∣|A \cdot B| = |A| |B|∣A⋅B∣=∣A∣∣B∣

同样的, 可以证明: cof(A⋅B)=[cof(A)]⋅[cof(B)]cof(A \cdot B) = [cof(A)] \cdot [cof(B)]cof(A⋅B)=[cof(A)]⋅[cof(B)]

计算矩阵A的逆的步骤:

计算矩阵的余子式: cof(A)

定义一个矩阵M, 其元素MijM_{ij}Mij​为矩阵A消去第i行第j列之后的行列式:

所以,定义矩阵A的余子式为:

cof(A)=(−1)i+jMij

cof (A) = (-1)^{i+j}M_{ij}

cof(A)=(−1)i+jMij​

计算伴随矩阵, adj(A),

adj(A)=[cof(A)]T

adj(A) = [cof(A)]^T

adj(A)=[cof(A)]T

计算矩阵的逆:

A−1=adj(A)∣A∣

A^{-1} = \frac{adj(A)}{|A|}

A−1=∣A∣adj(A)​

由于:

可以将矩阵的余子式的每一行写成:

M1i=ϵijkA2jA3kM_{1i} = \epsilon_{ijk}A_{2j}A_{3k}M1i​=ϵijk​A2j​A3k​

M2i=ϵijkA1jA3kM_{2i} = \epsilon_{ijk}A_{1j}A_{3k}M2i​=ϵijk​A1j​A3k​

M3i=ϵijkA1jA2kM_{3i} = \epsilon_{ijk}A_{1j}A_{2k}M3i​=ϵijk​A1j​A2k​

问题1.24 证明:当且仅当 det⁡A=0\det A = 0detA=0, 存在非零向量n⃗≠0⃗\vec n \neq \vec 0n=0使得A⋅n⃗=0⃗A\cdot \vec n = \vec 0A⋅n=0

正交张量

在连续介质力学,正交张量发挥了很重要的角色

若二阶张量QQQ满足其转置与其逆相等: QT=Q−1Q^T = Q^{-1}QT=Q−1,则称QQQ 是正交张量

Q⋅QT=QT⋅Q=1Q \cdot Q^T = Q^T \cdot Q = 1Q⋅QT=QT⋅Q=1

QikQjk=QkiQkj=δijQ_{ik}Q_{jk} = Q_{ki}Q_{kj}= \delta_{ij}Qik​Qjk​=Qki​Qkj​=δij​

性质:

Q的逆等于Q的转置,正交性: Q−1=QTQ^{-1}=Q^TQ−1=QTQ是旋转张量, 如果: det⁡Q≡∣Q∣=+1\det Q \equiv |Q| = +1detQ≡∣Q∣=+1

如果∣Q∣=−1|Q| = -1∣Q∣=−1正交张量为反射张量

两个正交张量点积得到的张量也是正交的:

C−1=(A⋅B)−1=B−1⋅A−1=BT⋅AT=(A⋅B)T=CTC^{-1} = (A \cdot B)^{-1}= B^{-1} \cdot A^{-1} = B^T \cdot A^T= (A\cdot B)^T=C^TC−1=(A⋅B)−1=B−1⋅A−1=BT⋅AT=(A⋅B)T=CT

正交变换:

a~⃗=Q⋅a⃗\vec{\tilde a}=Q \cdot \vec aa~=Q⋅a

b~⃗=Q⋅b⃗\vec{\tilde b}=Q \cdot \vec bb~=Q⋅b

以上向量点积:

a~⃗⋅b~⃗=(Q⋅a⃗)⋅(Q⋅b⃗)=a⃗⋅QT⋅Q⋅b⃗=a⃗⋅1⋅b⃗=a⃗⋅b⃗\vec{\tilde a} \cdot \vec{\tilde b}=(Q \cdot \vec a) \cdot (Q \cdot \vec b)=\vec a\cdot Q^T\cdot Q\cdot \vec b=\vec a\cdot1\cdot \vec b = \vec a \cdot \vec ba~⋅b~=(Q⋅a)⋅(Q⋅b)=a⋅QT⋅Q⋅b=a⋅1⋅b=a⋅b

a~ib~i=(Qikak)(Qijbj)=ak(QikQij)bj=akδkjbj=akbk\tilde a_i \tilde b_i=(Q_{ik}a_k) (Q_{ij}b_j)=a_k(Q_{ik}Q_{ij})b_j=a_k\delta_{kj}b_j=a_kb_ka~i​b~i​=(Qik​ak​)(Qij​bj​)=ak​(Qik​Qij​)bj​=ak​δkj​bj​=ak​bk​

同样的,对于a~⃗=b~⃗\vec{\tilde a} = \vec{\tilde b}a~=b~,,有:a~⃗⋅a~⃗=∣∣a~⃗∣∣2=a⃗⋅a⃗=∣∣a⃗∣∣2\vec{\tilde a} \cdot \vec{\tilde a}=||\vec{\tilde a}||^2=\vec a \cdot \vec a=||\vec a||^2a~⋅a~=∣∣a~∣∣2=a⋅a=∣∣a∣∣2

因此,在一个正交变换中,向量的大小和它们之间的角度不会改变。

正定张量、负定张量和半正定张量

正定的 positive definite: 对于所有x^≠0⃗\hat x \neq \vec 0x^=0

张量表示:x^⋅T⋅x^>0\hat x \cdot T \cdot \hat x >0x^⋅T⋅x^>0

指标表示:xiTijxj>0x_i T_{ij}x_j > 0xi​Tij​xj​>0

负定的 negative definite: 对于所有x^≠0⃗\hat x \neq \vec 0x^=0

张量表示:x^⋅T⋅x^<0\hat x \cdot T \cdot \hat x <0x^⋅T⋅x^<0

指标表示:xiTijxj<0x_i T_{ij}x_j < 0xi​Tij​xj​<0

半正定的 semi-positive definite: 对于所有x^≠0⃗\hat x \neq \vec 0x^=0

张量表示:x^⋅T⋅x^≥0\hat x \cdot T \cdot \hat x \geq 0x^⋅T⋅x^≥0

指标表示:xiTijxj≥0x_i T_{ij}x_j \geq 0xi​Tij​xj​≥0

负定的 negative definite: 对于所有x^≠0⃗\hat x \neq \vec 0x^=0

张量表示:x^⋅T⋅x^≤0\hat x \cdot T \cdot \hat x \leq 0x^⋅T⋅x^≤0

指标表示:xiTijxj≤0x_i T_{ij}x_j \leq 0xi​Tij​xj​≤0

若α=x^⋅T⋅x^=T:(x^⨂x^)=Tijxixj\alpha =\hat x \cdot T \cdot \hat x = T:(\hat x \bigotimes \hat x) = T_{ij}x_ix_jα=x^⋅T⋅x^=T:(x^⨂x^)=Tij​xi​xj​,则α\alphaα关于x^\hat xx^的导数为:

∂α∂xk=Tij∂xi∂xkxj+Tijxi∂xj∂xk=Tijδikxj+Tijxiδjk=Tkjxj+Tikxj=(Tki+Tik)xi\frac{\partial \alpha}{\partial x_k} = T_{ij}\frac{\partial x_i}{\partial x_k}x_j+T_{ij}x_i\frac{\partial x_j}{\partial x_k}\\= T_{ij}\delta_{ik}x_j+T_{ij}x_i\delta_{jk} \\ =T_{kj}x_j+T_{ik}x_j \\ =(T_{ki}+T_{ik})x_i∂xk​∂α​=Tij​∂xk​∂xi​​xj​+Tij​xi​∂xk​∂xj​​=Tij​δik​xj​+Tij​xi​δjk​=Tkj​xj​+Tik​xj​=(Tki​+Tik​)xi​

所以:

∂α∂x^=2Tsym⋅x^ ⟹ ∂2α∂x^⨂∂x^=2Tsym

\frac{\partial \alpha}{\partial \hat x}=2T^{sym}\cdot \hat x \implies \frac{\partial^2\alpha}{\partial \hat x \bigotimes \partial \hat x} = 2T^{sym}

∂x^∂α​=2Tsym⋅x^⟹∂x^⨂∂x^∂2α​=2Tsym

同样的,以下等式成立:

x^⋅T⋅x^=x^⋅Tsym⋅x^\hat x \cdot T \cdot \hat x = \hat x \cdot T^{sym} \cdot \hat xx^⋅T⋅x^=x^⋅Tsym⋅x^

因为如果张量的对称部分是正定的,那么该张量也是正定的

NOTE: T的特征值必须为正,T才能为正定的

问题1.25 证明:C=FT⋅FC = F^T \cdot FC=FT⋅F和b=F⋅FTb = F \cdot F^Tb=F⋅FT都是对称半正定张量。并确定什么条件下C和bC和bC和b是正定张量

张量的加性分解

任意两个张量S,T≠0S, T\neq 0S,T=0,将SSS表示成张量的加性分解:

S=αT+U,其中U=S−αTS = \alpha T + U, 其中 U = S - \alpha TS=αT+U,其中U=S−αT

所以,SSS由α\alphaα决定,有无穷多种分解方式

然而,当Tr(T⋅UT)=Tr(U⋅TT)=0Tr(T \cdot U^T) = Tr(U \cdot T^T)=0Tr(T⋅UT)=Tr(U⋅TT)=0, 则加性分解是唯一的

S⋅TT=αT⋅TT+U⋅TT ⟹ Tr(S⋅TT)=αTr(T⋅TT)+Tr(U⋅TT)=αTr(T⋅TT)S\cdot T^T =\alpha T \cdot T^T+U\cdot T^T \\ \implies Tr(S\cdot T^T ) = \alpha Tr(T \cdot T^T) +Tr(U \cdot T^T)=\alpha Tr(T\cdot T^T)S⋅TT=αT⋅TT+U⋅TT⟹Tr(S⋅TT)=αTr(T⋅TT)+Tr(U⋅TT)=αTr(T⋅TT)

⟹ α=Tr(S⋅TT)Tr(T⋅TT)

\implies\alpha = \frac{Tr(S\cdot T^T ) }{Tr(T\cdot T^T)}

⟹α=Tr(T⋅TT)Tr(S⋅TT)​

假设T=1T = 1T=1

α=Tr(S⋅1)Tr(1⋅1)=Tr(S)Tr(1)=Tr(S)3

\alpha = \frac{Tr(S\cdot 1 ) }{Tr(1\cdot 1)} =\frac{Tr(S ) }{Tr(1)} = \frac{Tr(S ) }{3}

α=Tr(1⋅1)Tr(S⋅1)​=Tr(1)Tr(S)​=3Tr(S)​

U=S−αT=S−Tr(S)31≡Sdev

U = S - \alpha T=S - \frac{Tr(S ) }{3} 1 \equiv S^{dev}

U=S−αT=S−3Tr(S)​1≡Sdev

所以:

S=Tr(S)31+Sdev=Ssph+Sdev

S = \frac{Tr(S ) }{3} 1 + S^{dev} =S^{sph} + S^{dev}

S=3Tr(S)​1+Sdev=Ssph+Sdev

NOTE:

Ssph=Tr(S)31S^{sph} = \frac{Tr(S ) }{3} 1Ssph=3Tr(S)​1是球形张量;

Sdev=S−Tr(S)31S^{dev} = S - \frac{Tr(S ) }{3} 1Sdev=S−3Tr(S)​1是偏张量

如果T=12(S+ST)T = \frac{1}{2}(S + S^T)T=21​(S+ST),则

α==Tr(S⋅TT)Tr(T⋅TT)=12Tr(S⋅(S+ST)T)14Tr((S+ST)⋅(S+ST)T)=1

\alpha = \frac{}{} = \frac{Tr(S\cdot T^T ) }{Tr(T\cdot T^T)} = \frac{\frac{1}{2}Tr(S\cdot (S + S^T)^T ) }{\frac{1}{4}Tr((S + S^T)\cdot (S + S^T)^T)}=1

α=​=Tr(T⋅TT)Tr(S⋅TT)​=41​Tr((S+ST)⋅(S+ST)T)21​Tr(S⋅(S+ST)T)​=1

可以定义U=S−αT=S−T=S−12(S+ST)=12(S−ST)U = S - \alpha T=S-T=S-\frac{1}{2}(S + S^T)=\frac{1}{2}(S-S^T)U=S−αT=S−T=S−21​(S+ST)=21​(S−ST)

所以可以得到SSS的加性分解为:

S=12(S+ST)+12(S−ST)=Ssym+SskewS = \frac{1}{2}(S + S^T)+\frac{1}{2}(S - S^T) = S^{sym} + S^{skew}S=21​(S+ST)+21​(S−ST)=Ssym+Sskew

问题1.26 求四阶张量PPP使得P:A=AdevP:A=A^{dev}P:A=Adev,其中AAA是二阶张量

其中,用到:

参考教材:

Eduardo W.V. Chaves, Notes On Continuum Mechanics